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CHARACTERIZATION AND
FABRICATION OF SYNTHETIC ROUGH

SURFACES FOR ACOUSTICAL
SCALE-MODEL EXPERIMENTS

I. INTRODUCTION

The study of energy scattered from rough surfaces spans a number of disciplines, among them those
involving either sound or electromagnetic waves. Within the field of acoustics, rough-surface scattering
impacts sound fields in rooms, noise in urban environments, and acoustic boundary interaction in the
ocean. Ocean acoustics, in particular, utilizes theories of scattering from rough surfaces to characterize the
interaction of sound with the ocean surface (air-water interface) and bottom (water-bottom interface and
subsurface layers). For characterizing the performance of sonar systems, a number of theories have been
applied to cover a wide range of frequencies and the entire range of scattering geometries in three dimensions.
Some theories require limitations on the roughness, such as perturbation theory or small-slope theory [1, 2];
others place limitations on the geoacoustic parameters of an ocean bottom, such as wedge assemblage [3, 4].
While rough surfaces of ocean bottoms may involve topographical variations arising from either geological
processes or discrete objects (such as shells), here discussion focuses on rough surfaces of purely geological
origin.

This report describes a portion of a larger effort to characterize wave-field scattering by rough surfaces
found in nature—specifically the scattering of acoustic fields by rough ocean bottoms.

Characterization of acoustic scattering by rough ocean bottoms requires not only devising an adequate
mathematical/physical theory of rough-surface scattering and implementing it in software (see [2]), but
also conducting an exhaustive verification by comparison with scattering data from experimental measure-
ments or numerical simulations. However, both of these methods for verification of model predictions have
practical and technical limitations. The scarcity of adequate data on ocean-bottom properties and the con-
sequent inability to conduct systematic studies of the dependence of ocean-bottom scattering strength on
a roughness parameter, such as spectral exponent (see Sec. II B) make verification using scattering data
taken from natural sea floors impractical. Numerical modeling (e.g., finite-element and boundary-element
methods) also has practical limitations. While it has been successfully applied to two-dimensional scatter-
ing from surfaces with stochastic roughness that varies in one dimension only, three-dimensional scattering
from surfaces with stochastic roughness that varies in two dimensions can present significant difficulties. To
circumvent these limitations, small-scale physical models of rough ocean bottoms have been manufactured
at sizes manageable for use in an acoustic tank facility and verification has been conducted using data taken
in the laboratory at appropriately scaled-up frequencies. Such models can be used to investigate theoretical
predictions relating to both roughness parameters and geoacoustic parameters such as compressional and
shear speeds/attenuations (see Ref. 5 and references therein). In manufacturing these small-scale experi-
mental models, no attempt has been made to recreate any actual geophysical region in miniature. Rather,
ocean-bottom topography is described using the mathematics of self-affine stochastic fractals.

Scattering theories applied in underwater acoustics fall into two categories: those involving a stochastic
description of the rough surface and those treating the rough surface deterministically. In this report,
stochastic rough surfaces are discussed exclusively. However, the stochastic rough surface is an abstraction;
statistical properties of rough surfaces are more properly regarded not as properties of individual surfaces
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but as properties of the ensemble of rough surfaces that are realizations of a particular random process.
Individual realizations are, when considered in isolation, deterministic. Therefore, physical models created
to represent stochastic ocean bottoms and test stochastic scattering theories can also be used for testing
deterministic scattering theories.

Choosing to verify scattering theories by means of physical scale models based on fractal geometry
requires that three tasks be achieved: (1) understanding the application of the abstract mathematics of
fractal geometry to the description of surface topography, (2) incorporating into fractal models recent results
that quantify the effects of representing unbounded self-affine fractal surfaces as bounded, discretely sampled
objects, and (3) developing or adapting the algorithms necessary to fabricate physical realizations of fractals
using a modern computer-numerically controlled milling machine. The information that was found to be
essential for success in these three tasks has been summarized in this report. The implementation of
those concepts and techniques needed for the manufacture of random rough surfaces are illustrated by
accompanying matlab code. This code allows users to numerically generate rough surfaces that are two-
dimensional realizations of band-limited fractional Brownian motion and allows for such surfaces to be
characterized in terms of statistical and fractal metrics.

This report is grouped into two primary sections: Characterization of Rough Surfaces and Fabrication of
Rough Surfaces. In the first of these sections, a number of disparate elements are brought together in order
to provide a mathematical description of rough surfaces as both random processes and stochastic fractals.
A parameter study (portions of which are shown in the Appendix A) illustrates the relationship between
the appearance of rough surfaces and their roughness parameters. The final portion of the first section
relates the preceding theoretical development to real ocean bottoms by considering both how roughness
parameters affect scattering and the range of roughness parameters observed in the ocean. The second
section describes how physical models of the surfaces described in the first section can be computationally
generated and then physically fabricated with the use of computer-aided-manufacturing equipment, and how
the accuracy of the resulting realization can be tested. The report concludes with a summary of the material
presented. Appendices B and C give further details of the algorithms used for the computational generation
and physical fabrication of rough surfaces, including descriptions of matlab software tools included on the
CD-ROM with this report. Abbreviations and symbols are defined in a glossary located at the end of this
report. Numerical quantities are given in SI (MKS) units exclusively.

While the primary goal of this work is to bring together concepts from disparate disciplines, throughout
the report a number of new concepts are introduced. In particular, the recent concept of approximately
self-affine surfaces is applied to numerical generation and physical fabrication of realizations of random rough
surfaces. The high- and low-k bandwidth restrictions inherently imposed by these processes are related to
their effects on the properties of surfaces both as characterized by fractal mathematics and observed visually.

II. CHARACTERIZATION OF ROUGH SURFACES

In this section, a consistent description of rough-surface topography is developed through a series of
definitions. Rough surfaces are described first as infinite-extent realizations of random processes. In Sec.
II B each such process is characterized by a power-spectral density (PSD), in particular, a PSD that follows
a power-law form over some portion of the spectrum. A parallel description of rough-surface topography
in terms of stochastic fractals is developed in Sec. II C and related to characterization in terms of PSD.
Particular attention in both descriptions of surface roughness is given to surfaces having cutoff power-law
PSD for which the power-law behavior is restricted in bandwidth at one or both frequency extremum. In
Sec. II D, realizations of stochastic rough surfaces are generated to provide an intuitive presentation of the
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effects of surface-roughness parameters on the appearance of rough surfaces.

A. Statistics of Rough-Surface Topography

A rough surface is described by its topography z (r), which is the height of the surface above a plane
containing position vector r having Cartesian components (x, y). The topography is given by the mapping{
z (r) : r ∈ R

2
}

which defines a surface in R
3 (it is assumed here that the surface topography is single

valued). In this initial discussion, rough surfaces are considered to be of infinite extent and defined for all
values of r, (i.e., ‘continuous’ in signal-processing terminology), as the expression for the mapping from R

2

implies. In practice, z (r) is defined over a finite set of discrete points having finite physical dimensions. The
consequences of this will be addressed in Sec. IIIA 1.

Geomorphological rough surfaces are, by necessity [6], modeled as realizations of random processes such
that the ensemble of realizations {z} of a particular random process is described by the probability density
function (PDF) of surface height fz(ζ) where ζ is the set of possible surface heights. In the following
discussion, it is initially assumed that the random process possesses certain statistical attributes (see, e.g.,
Ref. 7, pp. 23–27): homogeneity (stationarity or translational invariance), isotropy (rotational invariance),
and ergodicity (equivalence of spatial averages over a single realization to ensemble averages).

Given an appropriate choice of the reference plane from which z is measured, the mean height of the
surface 〈z〉 is zero

〈z〉 =
∫ ∞

−∞
ζfz (ζ)dζ = 0 , (1)

where 〈·〉 is an expectation operator. The assumption of ergodicity allows this operator to be interpreted
either as a spatial, 〈·〉s , or ensemble, 〈·〉e , average. Zero-mean height can be alternatively achieved by
modeling the topography as the sum of two functions z (r) + z0 (r) where z (r) is the stochastic small-scale
roughness and z0 (r) is the deterministic large-scale roughness [8]. Thus, z0 (r) effectively detrends the data
and ensures 〈z〉 = 0. The root-mean-square (RMS) surface roughness (sometimes termed interface width)
σ is given by the standard deviation of fz(ζ)

σ =
√
〈z2〉 =

√∫ ∞

−∞
ζ2fz (ζ)dζ . (2)

In many cases the height PDF of real random rough surfaces is Gaussian in form:

fz (ζ) =
1

σ
√

2π
exp
(
− ζ2

2σ2

)
. (3)

This is a consequence of the central-limit theorem, which predicts that the PDF fΞ(ζ) of the sum of n

independent identically distributed random variables, Ξ =
n∑

i=1

Λi, tends toward Gaussian form as n → ∞,

provided that Λi have finite mean and finite variance.
Surfaces having identical PDFs are distinguished from one another by higher-order statistical descriptors,

which may be expressed in either spatial or spectral domains. In particular, Gaussian surfaces (those drawn
from an ensemble having entirely Gaussian joint PDFs) are fully described by second-order statistics. In
the spatial domain second-order statistics are expressed by the autocovariance function C0:

C0 (r1, r2) = 〈z (r1) z (r2)〉 ∈ [−σ2, σ2] . (4)

Equivalently, spatial second-order statistics can be expressed by the autocorrelation function C, which is
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simply the autocovariance function normalized by the variance of fz(ζ)

C (r1, r2) =
〈z (r1) z (r2)〉

σ2
∈ [−1, 1] . (5)

For homogeneous, isotropic random processes C (r1, r2) is a function only of the distance between the
two points C (R), where R ≡ |r1 − r2| is termed the translation (sometimes termed the lag or slip). For such
surfaces, a correlation length � can be defined as the translation at which C (R) first falls from its maximum
C (0) = 1 to a specified value. Here, � is defined as the translation for which C (�) = 1/e. In other words,
the correlation length is a measure of the width of the central peak of the autocorrelation function. While
a truly random process will have some value of translation for which C (R) decreases to zero, C (R) need
not be a strictly decreasing function of translation. In fact, the surfaces of interest here are particularly
distinguished by the existence of nonzero correlations for large values of translation (as discussed in Sec.
II C).

The structure function (also termed the Allan deviation, the height-height correlation function, the
mean-square increment function, or the variogram) is a spatial-domain second-order statistic equivalent to
the autocorrelation function

S (R) =
〈
[z (r) − z (r + R)]2

〉
, (6)

and is related to the autocorrelation function by

S (R) = 2σ2 [1 − C (R)] . (7)

In the spectral domain, second-order statistics are given by the PSD. For homogeneous, one-dimensional
random processes, the linear PSD p (kx) is related to the autocorrelation function and vice versa by a Fourier
transform through the Wiener-Khintchine relation:

p (kx) =
σ2

2π

∫ ∞

−∞
C(R)e−ıkxRdR , (8a)

C(R) = σ2

∫ ∞

−∞
p (kx) eıkxRdkx , (8b)

where kx∈ (−∞,∞) is the one-dimensional spatial wavenumber. When expressed in radial coordinates for
isotropic two-dimensional random processes, the radial PSD P (k) is related to the autocorrelation function
and vice versa by a Hankel transform

P (k) =
1
2π

∫ ∞

0

C (R) J0 (kR) RdR , (9a)

C (R) = 2π

∫ ∞

0

P (k) J0 (kR) kdk , (9b)

where J0 is the zeroth-order Bessel function and k ∈ (0,∞) is the radial spatial wavenumber k = ‖k‖ =√
k2

x + k2
y.

B. Power-Law Rough Surfaces

Spectral estimates made from measurements of sea-floor topography are often well modeled by PSDs that
are inverse power-law functions of radial spatial wavenumber P (k) ∝ k−γ2 with γ2 > 2 [9, 10, 11, 12, 13, 14]
and phase spectra that are uniformly distributed on (0, 2π] [13, 14]. Because of the tractability of scattering
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theories based on such spectra, characterizing sea-floor topography parametrically based on an inverse-
power-law PSD is the dominant paradigm in underwater geoacoustics, among other areas of study.

A pure power-law PSD, for an isotropic surface, is given by

P (k) =
w2

(h0k)γ2 for k ∈ (0,∞) , (10)

where h0 is a reference length, usually taken to be unity, w2 is the spectral strength in units of (length)4

(i.e., the value of the PSD at k = h−1
0 ), and γ2 ∈ (2,∞) is the two-dimensional spectral exponent.

In one dimension, (i.e., for a profile measured along a surface) the linear PSD is given by

p (kx) =
w1

(h0 |kx|)γ1 for kx ∈ (−∞,∞) , (11)

where γ1 = γ2 − 1, and

w1 =
√

π

h0

Γ
(

1
2γ1

)
Γ
(

1
2γ2

)w2 ,

as shown in Refs. 15 (pp. 12–15) and 2 (the Appendix A, pp. 2898–2899). (Note that both of the cited
references contain typographical errors; the results reported here are correct.) Regardless of functional form,
the radial PSD, P (k), and linear PSD, p (kx), of an isotropic stochastic rough surface are related by the
Abel transform [see Refs. 10 (the Appendix) and 15 (pp. 7–12)].

Note that p (kx) is truly a power-spectral density in that it has units (length)3, which are units of “power”,
(length)2, per elemental unit of wavenumber, (length)−1. Likewise, P (k) has units (length)4, which are units
of “power”, (length)2, per elemental unit wavenumber, (length)−2. Consequently, for profiles,

σ2 =

∞∫
−∞

p (kx) dkx , (12)

and, for surfaces,

σ2 =

∞∫
−∞

p (kx) dkx , (13)

where σ2 corresponds to the total “power” of z(r).
General bounds on spectral exponent are expressed in terms of d, the topological dimension, by γd ∈

(d,∞), where d = 1 or 2. Topological dimension is related to d, the dimensionality of the embedding
Euclidean space, by d = d+1, such that the mapping describing the topography {z (r) : r ∈ R

d} corresponds
to the graph of the mapping {(r, z (r)) : r ∈ R

d}, which is in R
d.

It is nonphysical for the PSD of surface topography to follow a power-law form for all k. The resulting
surface has infinite RMS roughness because of the singularity of the PSD as k → 0. Likewise, this nonphysical
nature is reflected in the autocorrelation function [see Eq. (15) of Ref. 2], which results from the divergence
of the integrals relating C(R) to the PSD of power-law form. (However, the structure function [Eq.(6)]
is defined for surfaces having a power-law PSD [16].) Physically realizable random rough surfaces must
therefore have PSDs that depart from a simple power-law form for small k. A variety of PSDs for which
power-law behavior has a low-frequency cutoff or is limited to finite bandwidth have been proposed; some
of which are described below and plotted in Fig. 1. Particular attention has been given to PSDs for which
C(R), as given by Eqs.(8 and 9), can be given an analytical expression. This is of interest because it is C(R)
rather than P (k) that enters directly into small-slope calculations of scattering from rough surfaces [2].

The simplest way to achieve a PSD having the needed small-k cutoff of power-law behavior is restricting
the nonzero portions of a power-law PSD to bandwidth [k−, k+] where k− > 0 and k+ may be infinite. The
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FIG. 1: Power-spectral density as a function of radial spatial wavenumber for each of the forms described in Sec. II B are
compared for γ2 = 3.0 and w2 = 2 · 10−5 m4. Small-k cutoff parameters have been adjusted to yield approximately equal

cutoff points for each PSD.

resulting spectrum with ‘box-car’ cutoff is given by

P (k) =

{
w2

(h0k)γ2 k− � k � k+

0 otherwise
, (14)

and is depicted in Fig. 1. By forcing PSD to zero at k = 0, Eq.(14) assures that the resulting surface has
no constant offset in height.

As an alternative to the abrupt transitions of the PSD proposed in Eq.(14), a form having finite power at
small k, which may better represent PSD observed both in shallow-water (Ref. 17, p. 365) and deep-water
ocean bottoms [10, 18], can be obtained from a power-law spectrum with an ‘algebraic’ cutoff at small k

[2, 10]:
P (k) =

w2[
(h0k)2 + (h0kL)2

]γ2/2
, (15)

as shown in Fig. 1. A power-spectral density of a similar form to Eq. 15 can be approximated by a piece-wise
continuous function (not shown in Fig. 1) and generalized to include a large-wavenumber cutoff [19], which
is helpful for modeling real PSDs measured on a regular array of points (see Sec. IIIA 1):

P (k) =




w2
h0k

γ2
L

k < kL

w2
h0kγ2 kL � k � kH

0 k > kH

. (16)

Surfaces described by Eqs.(15 and 16) have nonzero mean height, which can be removed by detrending as
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described in Sec. III C 1.
Observed PSDs sometimes display positive slope (power decreasing with wavenumber) below a cutoff

frequency, which may be an artifact of detrending the measured profiles [20]. Power-spectral density of this
form, shown in Fig. 1, can be realized by a power-law spectrum with a ‘Gaussian’ cutoff at small k, which
results from subtracting the Gaussian-weighted moving average of the topography from a surface having
power-law PSD, as described in Ref. 21:

P (k) =
w2

(h0k)γ2

{
1 − exp

[
− (kaL)2

/
2
]}2

. (17)

However, C(R) corresponding to this PSD is not analytically expressible.
A similar low-frequency cutoff, but with C(R) that is analytically expressible, is achieved by a PSD

written as the difference between two power-law PSDs having algebraic small-k cutoffs [22, 23].

P (k) = P1 (k) − P2 (k) , (18a)

P1 (k) =
b1[

1 + (b2h0k)2
]γ2/2

, (18b)

P2 (k) =
b1[

1 +
(

b2h0k
a2

)2]γ2/2
, (18c)

as shown in Fig. 1. The spectral strength w2 and the location of the spectral peak kp are related to the
parameters of the difference spectrum a2, b1, and b2 through

b1 =
w2b

γ2
2

1 − aγ2
2

, (19a)

b2 =
1

h0kp


 a

2
1+γ2/2

2 − 1

1 − a
2

1+γ2/2−2

2




1
2

, (19b)

where a2 determines the steepness of P (k) about k = kp.
While spectral exponent γ2 is often assumed constant throughout the region of support of P (k), it has

been found that γ2 of real surfaces sometimes varies with k [24, 25, 26]. Herzfeld et al. have observed that
spectral exponent is greater at large k than at small k for measurements of deep-water ocean bottoms made
over length scales 5 m–80 km and 1 m–600 km (see Ref. 25 and Refs. therein). At much smaller scales,
0.05 mm–3.5 m, Briggs et al. have found similar results for measurements of shallow-water granular ocean
bottoms. This increase in spectral slope at large k is often associated with grain size of the constituent
materials [24, 27]. Measured values of w2 and γ2 for real ocean bottoms are described in Sec. II E.

C. Fractal Rough Surfaces

That real topography is taken to be the realization of a random process having P (k) ∝ k−γ2 has
significant implications for how it is characterized. Power spectra of this form are frequently encountered in
time-series analysis, where random sequences z (x), (d = 1), having spectra p (kx) ∝ k−γ1

x , γ1 ∈ (0,∞) are
termed 1/fα or ‘fractional’ noise.

The range of random sequences of this form is bound by Gaussian white noise, having γ1 = 0, and
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Brownian motion (realizations of the Wiener process, sometimes termed Brown noise), having γ1 = 2. These
two bounding sequences are related in that Gaussian white noise is (formally, over smoothed intervals) the
derivative (or ‘increments process’) of Brownian motion.

Brownian motion (and consequently Gaussian white noise) can be defined axiomatically [6, 28].

Theorem 1. The process {z} is a continuous Brownian motion if ∀ ∆x the increments ∆z (x) =
z (x + ∆x) − z (x) satisfy

1. Gaussian distribution

2. zero mean

3. variance ∝ ∆x

4. successive increments ∆z (x) and ∆z (x + ∆x) are uncorrelated .[84]

An axiomatic definition for all 1/fα noise is arrived at by generalizing the axiomatic definition of Brow-
nian motion [29].

Theorem 2. The process {z} is a continuous fractional Brownian motion (FBM) if ∀ ∆x the increments
∆z (x) = z (x + ∆x) − z (x) satisfy

1. Gaussian distribution

2. zero mean

3. variance ∝ ∆x2H, where H ∈ (0, 1] is the Hurst exponent

4. successive increments ∆z (x) and ∆z (x + ∆x) are correlated with correlation coefficient given by
22H = 2 + 2ξ where ξ ∈ (− 1

2 , 1
)

.

Such random processes are termed fractional Brownian motion (FBM) because of their noninteger spec-
tral exponents. The spectral exponent γ1 of FBM can be expressed in terms of the Hurst exponent by
γ1 = 2H + 1 (Ref. 30, p. 67). The derivative (increments process) of FBM is termed fractional Gaussian
noise (FGN). Together FBM and FGN span an important segement of all 1/fα noise, with FBM having
γ1 ∈ (1, 3] and FGN having γ1 ∈ [−1, 1]. The only Gaussian process that is both self-affine and has sta-
tionary increments is FBM [31]. Fractional Brownian motion (though not FGN) can be generalized from
random sequences (d = 1) to random fields (d = 2) and, thus, can serve as a model for the topography of
random rough surfaces having a power-law PSD.

It is particularly notable that FBM lacks an inherent length scale. Stochastic processes that have this
property are termed self-affine and are characterized by their Hurst exponent H ∈ (0, 1]. A real-valued
stochastic process is self affine with Hurst exponent H if its increments process ∆z (ϑ) = z (r + ϑ) − z (r)
satisfies the homogeneity relation

{∆z (λϑ)} .=
{
λH∆z (ϑ)

} ∀ λ, r, and ϑ , (20)

where λ is a constant scale factor, and .= denotes statistical equality, or, more exactly, equality of the
finite-dimensional distributions [32, 33]. This homogeneity relation implies that empirical histograms of
increments processes should be nearly equal when scaled according to Eq. 20. Because Eq. 20 is valid for
all ϑ, the homogeneity relation also holds for the process itself [31]

{z (λr)} .=
{
λHz (r)

} ∀ λ . (21)
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Consequently, self-affine surfaces are (statistically) invariant under transformations of the form

(x, y, z) ⇒ (λx, λy, λHz
)

. (22)

If H = 1, FBM is self-similar and appears (statistically) identical when observed at all length scales. This
is impossible for single-valued topography that can be expressed by the mapping described in Sec. II A, for
which smaller features implictly have steeper slope than larger features [34, 35]. If H < 1, FBM appears
(statistically) identical (e.g. self-similar) only if the z-axis is scaled independently of the other axes.

A property of self-affinity is dependence of surface measures (or, more exactly, the expectation values of
these measures for the process) on observation length, i.e. FBM is nonstationary. For example, the RMS
roughness [32, 33] and the structure function obey scaling relationships

σ (L) .= σ (L0)
(

L

L0

)H

, (23a)

S (L) .= S (L0)
(

L

L0

)H

, (23b)

where L is the length of an interval [0, L] contained in the total interval [0, L0] of length L0. Only in the case
that H → 0 are surface measures independent of profile length and is FBM a stationary random process.

In the case of FBM, H can be thought of as a parameter that determines the “rate at which roughness
changes scale,”[36] such that smaller values of H correspond to larger variations in small-scale topography.
This behavior can be categorized via the concept of ‘persistence’, which describes the extent to which
consecutive elements of increments process of z (r) are correlated. Realizations of FBM with d = 1 have
H ∈ (0, 1). For H ∈ (0, 1/2) FBM is antipersistent, with negative correlation between consecutive increments
and noise-like spatial variation. For H ∈ (1/2, 1) FBM is persistent with positive correlation between
consecutive increments and more regular spatial variation. In the case that H = 1/2, FBM reduces to
conventional (or ‘chaotic’) Brownian motion with uncorrelated increments.

The graphs of realizations of FBM are one of a class of geometries termed fractals—a term first coined
by Mandelbrot [28] to describe profiles and surfaces that display complexity not well described by their
topological or Euclidean dimensionality. Fractals can be formally (but not inclusively) defined as sets for
which the Hausdorff-Besicovitch dimension H exceeds the topological dimension d (Ref. 6, p. 15). Fractals
may be either deterministic or stochastic. When encountered in nature, fractals are almost exclusively
stochastic. In other words, they are realizations of random processes, like FBM.

The Hausdorff-Besicovitch dimension, H ∈ [d, d), is a measure of the space-filling quality of a fractal
object. A smooth profile (d = 1, d=2) has H = 1 and a smooth plane (d = 2, d=3) has H = 2. While
computing H of a set is complicated (Ref. 6, pp.362–365,458–459), H of self-affine profiles and surfaces
is equivalent to more simply computed dimensions, such as the box dimension [37]. For d = 1, the box
dimension B is given by

B = lim
χ→0+

− log n

log χ
, (24)

where n is the number of boxes of linear size χ needed to cover the set of points S ∈ R defining the profile.
The Hausdorff-Besicovitch dimension is essentially a local property of a profile or surface [Refs. 6 (p.

373) and 38]. In contrast, the Hurst exponent characterizes long-range correlation on a global scale. While
not true for all fractals [38], for self-affine fractals, such as FBM, the two aspects are interrelated. For
self-affine random fractals, the Hurst exponent (global property) is related to the Hausdorff-Besicovitch
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dimension (local property) by [see Refs. 39 (pp. 301–325) and 6 (p. 373)]

H = d − H (25)

such that smaller H corresponds to larger H and a rougher surface.
Topothesy (or ‘crossover length’) τ is a measure of the ‘strength’ of a fractal and is defined as the

horizontal distance (i.e., R) between two points connected by a line of RMS slope one radian [11, 16, 40].
For an isotropic rough surface, τ is identical for the surface (d = 2) and profiles formed by cutting the
surface (d = 1). Topothesy can be alternatively defined in terms of the structure function

S (τ) = τ2 ∀ d . (26)

The RMS roughness measured over a profile of length L, σ(L), is related to topothesy through the scaling
argument

σ (L) = τ1−HLH , (27)

where σ (τ) = τ .
Together the Hausdorff-Besicovitch dimension (or, alternatively, the Hurst exponent) and topothesy

provide a complete description of an isotropic, self-affine stochastic fractal surface.

1. Spectra of fractals

As conjectured by Mandelbrot and Van Ness (Ref. 29, p. 436) and later shown by Flandrin [41, 42], the
formally averaged PSD of FBM is given by the power-law P (k) ∝ k−2H−1.

The Hausdorff-Besicovitch dimension of FBM (of arbitrary d) is given by [16, 43]

H = 1 + d + (d − γd)/2 for γd ∈ (d, d + 2] (28)

Because Eq. (28) breaks down for γd > d + 2, it is often argued that γ2 ∈ (d, d + 2). However, γd > d + 2
simply corresponds to nonfractal differentiable profiles or surfaces of H = d having smoothness increasing
with γd [24, 44]. Such a conclusion is further confirmed by experimental measurements of spectral exponents
that are larger than the proposed limits (see, e.g., Ref. 12).

Profiles and surfaces can be categorized based on fractal dimension, as determined by spectral exponent.
For profiles (d = 1), γ1 ∈ (1, 3] ⇒ H ∈ (2, 1]:

• γ1 = 1, H = 2: extreme fractal (borderline area filling)

• γ1 = 2, H = 1.5: Brownian fractal (graph of one-dimensional Wiener process)

• γ1 = 3, H = 1: marginal fractal (borderline nonfractal) .

Five profiles that are realizations of FBM are shown in Fig. 2. Fractal dimensions of these profiles range
from 2 to 1 in uniform increments of 0.25.

For surfaces (d = 2), γ2 ∈ (2, 4] ⇒ H ∈ (3, 2]:

• γ2 = 2, H = 3: extreme fractal (borderline volume filling)

• γ2 = 3, H = 2.5: Brownian fractal (graph of two-dimensional Wiener process)

• γ2 = 4, H = 2: marginal fractal (borderline nonfractal) .

10



FIG. 2: Realizations of FBM for the range of Hausdorff-Besicovitch dimension H ∈ [2, 1]. Hausdorff-Besicovitch dimensions
are 2 (a), 1.75 (b), 1.5 (c), 1.25 (d), 1 (e). The y-axis is in normalized units,as the amplitudes of the zero-mean profiles are

normalized by σ. The x-axis is in arbitrary units (sample number)

The topothesy of a FBM profile (d = 1) or surface (d = 2) is related to power-law parameters by [45]

τα =
w2π

d/22αΓ (α/2)
h0 (γd − d) Γ (γd/2)

for γd ∈ (d, d + 2) , (29)

where α = d + 2 − γd such that, for isotropic surfaces (d = 2),

w2 =
π (γ2 − 2) Γ

(
γ2
2

)
22−γ2Γ

(
4−γ2

2

) τ4−γ2
2

(2π)γ2 . (30)

2. Band-limited fractals

The power-law PSD of self-affine stochastic fractal profiles and surfaces, such as FBM, is problematic
when the power-law functional form is assumed to exist for all k, as discussed in Sec. II B. FBM cannot be
easily characterized using conventional metrics, such as those described in Sec. II A. In particular, realiza-
tions of FBM possess mulitscale roughness such that they are continuous but nondifferentiable. Additionally,
they display long-range correlations over a range of translations limited only by the physical extent of the
particular realization. Self-affinity violates assumptions of (wide-sense) stationarity due to dependence of
measured quantities (e.g., σ) on sample size, while long-range correlations violate assumptions of ergodicity
due to the inability of any finite spatial-averaging domain to be large enough to recover all information
about the random process [46].

Real surfaces can be self-affine only over a “finite hierarchy of scales” [45]. Such surfaces can be said
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to be “approximately self-affine” [45] or to posses “limited self-affinity” [47]. At large scales, the finite
extent provides a small-k limit. At small scales, the molecular or granular structure provides a large-k
limit. Alternatively, small-scale limits of self-affinity can result from the limited resolution of manufacturing
processes, in the case of fabricated rough surfaces, or as an artifact of finite-resolution measurement methods,
when data from from real surfaces are analyzed.

Rough surfaces are therefore better modeled as approximately self-affine, having band-limited PSDs,
such as those given in Sec. II B. Doing so has a number of advantages. In particular, conventional metrics,
such as RMS roughness, σ, and autocorrelation, C (R), which are not well defined for FBM, can be defined
unambiguously for band-limited FBM. It has been shown that both FBM profiles [41] and surfaces [48]
having power-law PSD restricted to a finite band (with some additional conditions on the falloff outside of
the band) are wide-sense stationary. Likewise, band-limited FBM profiles and surfaces are differentiable,
due to the large-k cutoff.

However, limiting the hierarchy of scales of self-affinity for a self-affine fractal can alter the Hausdorff-
Besicovitch dimension H from that of the equivalent, ideally self-affine fractal [49, 50, 51, 52, 53]. The
relationship between H and γd given in Eq. (28) holds only for ideally self-affine fractals. Band limiting
in the spatial-wavenumber domain alters the form of the structure function, S (R), such that the linear
relationship between log S (R) and log R extends only over the scaling interval R ∈ (R−, R+), defined by
[50]:

R− =
[ √

π

γ1 − 1
Γ (H)

Γ (γ1/2)

]1/(3−γ1) 2
kx,−

, (31a)

R+ =
[

Γ (γ1/2)√
πΓ (H − 1)

]1/(γ1−1) 2
kx,+

, (31b)

where H is the Hausdorff-Besicovitch dimension of an ideal self-affine fractal having the same spectral
exponent (H = (5 − γ1)/2).

Similarly, topothesy, as defined by Eq. (26), is a function of the shape and location of small- and large-k
cutoffs, which alter the form of the structure function [19]. The small-k cutoff is manifest as oscillations in
S(R) (or, alternatively, C(R)) at large R [7, 50]. The large-k cutoff is also manifest as oscillations, which
are noticeable only for large σ [50].

An alternative definition of τ , based on an analytic expression for S(R), is independent of wavenumber
cutoffs. The band limited power-law PSD given by Eq. (14) has S(R) that is expressible as an asymptotic
expansion [50, 54] the first term of which is S(R) of an ideally self-affine fractal

S (R) = τd+2−γdRγd−d . (32)

Defining τ by the above expression leads to a form that is independent of the spectral cutoffs.

D. Parameter Study: Realizations of Band-Limited Fractal Surfaces

This section presents a series of realizations of a band-limited FBM surface. These are shown in Figs.
3–6 and described in Table I. These figures are grouped into two series, as indicated in Table I: Fig. 3
is a movie (with frames shown individually in the Appendix as Figs. 13–18) illustrating the the effect of
increasing γ2; Figs. 4–6 show the dependence on low-wavenumber cutoff [here kaL of Eq. (17)].

Varying γ2 and kaL produces changes in the realized surface that can be appreciated visually (the
parameter w2 simply acts as a scale factor). In the movie shown in Fig. 3 (and also Figs. 13–18 of the
Appendix), γ2 is varied for a particular realization while the other two parameters are fixed. Varying γ2
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TABLE I: Realizations of a band-limited fractal surface. All cases have h0 = 1m and w2 = 10−5 m4.

γ2 2.0 2.4 2.8 3.2 3.6 4.0 2.8 2.8 2.8
kaL 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 0.10

Figure 13a 14a 15a 16a 17a 18a 4 5 6

aCollected in Fig. 3 as one frame of an embedded QuickTime animation.

introduces a change in the overall length scale, but as the idealized distribution of heights is Gaussian, the
range of heights can be approximately standardized by subtracting the mean height of the entire realization
and dividing by the standard deviation of the heights. In each figure (including the figures in the appendix),
the x and y axes are in units of meters and the z-axis (represented by the color bar) is in normalized units
arrived at by dividing by σ. As such, realizations are presented using the same color scale. It is observed
that the graininess of various features decreases as γ2 increases, until the surface looks qualitatively different
from the γ2 = 2 surface. This is related to the behavior of the correlation function, as the values at small
lags can differ considerably for smaller values of γ2.

The particular plotting technique chosen results in certain features of the surface being perceived as
islands, the boundaries of which have a level of detail that varies with the fractal dimension of the surface.
In this way, the presentation is similar to the “zero set” of the elevation data formed by the intersection of
the surface with a plane oriented parallel to the nominal surface orientation. The fractal dimension of the
boundaries of the islands formed is thus one less than the fractal dimension of the surface itself. [55]

Figures 4–6 show the results of varying the low-k cutoff. In comparison with Fig. 5, which has the
same value of γ2 = 2.8 as Figures 4 and 6, there is an observable qualitative effect that changing the cutoff
produces a change in the apparent values of γ2, the high cutoff value producing a realization that has an
apparent γ2 greater than 3.

E. Rough Surface Experiments with Physical Models

As stated in the Introduction, rough-surface experiments with physical models become highly useful
when a systematic field experiment is impractical, as in a controlled experiment with bottom roughness pa-
rameters. While it is difficult to create physical models that are exact acoustic analogs of real ocean bottoms
over a complete set of parameters (such as density, shear/compressional speed, and shear/compressional at-
tenuation), a physical model can be constructed to exhibit scattering behavior analogous to a real ocean
bottom, such as a strong dependence on a particular parameter.

As an example, Carolina Coast limestone is a type of elastic ocean bottom for which the scattering
behavior has a large predicted dependence on γ2. At two sites off the Carolina Coast, Soukup and Gragg
[56] extracted values of w2 and γ2 using a geoacoustic inversion technique that analyzed scattering-strength
vs. grazing-angle curves in the band 2–3.5 kHz in water depths of 230–310 m under the assumption that
interface scattering wholly dominated any volume-scattering effects. The inverted spectral parameters for the
Carolina Coast limestone obtained by Soukup and Gragg [56] were γ2 = 2.6−2.8 and w2 = 4 ·10−4−9 ·10−4.
The scattering strength for this limestone predicted by the NRL small-slope model [2] is plotted in Fig. 7
as a function of grazing angle for different values of γ2 at 3500 Hz.

Limestone supports both compressional and shear waves, each with associated critical angles. Particu-
larly characteristic of the behavior of limestone is a clear stratification of scattering strength as a function
of γ2 below the lowest (shear-speed) critical angle. To investigate this substantial dependence of scatter-
ing strength on γ2, the predicted behavior of PVC, a material with analogous backscattering behavior,
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FIG. 3: Embedded QuickTime animation illustrating the changes observed in realizations of band-limited fractal surfaces
with as γ2 varies from 2 to 4, for fixed w2 = 1 · 10−5 m4 and kaL = 0.05. (See Table I.)

was studied. Below the compressional-speed (p-wave) critical angle for PVC at 300 kHz, the dependence
of scattering strength on γ2 is even more pronounced than for limestone. (Though PVC supports shear
waves, the speed of these waves is such that no shear-wave critical angle exists.) An example is shown in
Fig. 8. Scattering strengths from a rough PVC sheet at the Allied Geophysical Laboratory/University of
Houston were obtained and the mean behavior of the scattering was comparable to the predictions of the
NRL small-slope scattering model [57]. The PVC sheet had mean values of w2 and γ2 of 1.5 · 10−5 m4 and
2.9, respectively. The authors are currently fabricating rough surfaces from PVC that will represent other
values of w2 and γ2. Future research will also introduce different materials so that other predicted effects
of the small-slope theory, such as local minima at particular grazing angles, can be verified. While the
lowest-order small-slope predictions shown here were the motivation for the authors’ experimental design,
modeling the actual scattering behavior for such surfaces may require the use of a higher-order model for
surface scattering and a model of scattering in the subsurface volume.

III. FABRICATION OF ROUGH SURFACES

Creating a physical realization of a random rough surface is a two-step process. The first of these steps is
the numerical generation of the topography. Section IIIA describes how this can be achieved by a spectral
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FIG. 4: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 2.8, and kaL = 0.01. (See Table I.)

method. In this section the theoretical effects of the finite size of the realization and the requirement that
the surface be defined only over a discrete grid of points are also considered. The second step of creating
a physical realization of a random rough surface is physically manufacturing the generated topography.
Section III B describes how this can be achieved using a computer-numerically controlled milling machine.
In practice, the topography of a physically manufactured surface must be measured to inspect for accuracy
of the manufacturing process. Such a measurement process, using a touch-trigger probe, is described in Sec.
III C.

A. Generating Surface Realizations

When modeled as a random field, the topography of a particular rough surface z (r) is a realization of a
particular two-dimensional random process. Taking FBM as a model of random rough surface topography,
the first step in fabricating a rough surface is generation of a realization of FBM.

The earliest methods for generating realizations of FBM utilized the Weierstrass-Mandelbrot function
[58]. This extension of the Weierstrass function [59, 60], first proposed by Mandelbrot [28], represents profiles
(d = 1) by

� [W (x)] =
∞∑

n=−∞

[(
1 − eiαnx

)
eiφn
]

α(2−H)n
, (33)

15



 x(m)

 y
(m

)

0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

−3

−2

−1

0

1

2

3

FIG. 5: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 2.8, and kaL = 0.05. (See Table I.)

where α > 1 is a parameter and φn is the phase, a random variable uniformly distributed on (0, 2π]. Equation
(33) describes a summation of sinusoids having the geometric spectrum of wavenumbers kx = αn, the so-
called Weierstrass spectrum, and amplitudes ∝ kx = αn. The Weierstrass-Mandelbrot function is known to
be a fractal [28, 58, 61] and has a mean PSD consistent with FBM [58].

While first used only to describe fractals generated by Eq.(33), as in Ref. 58, the term Weierstrass-
Mandelbrot fractal has been informally extended to describe similar summations of sinusoids having different
wavenumber spectra. In particular, those defined on spectra of algebraic intervals, such as the Fourier
spectrum [47], can also be termed Weierstrass-Mandelbrot fractals. Berry and Lewis [58] were first to use
the Weierstrass-Mandelbrot function, defined over the Weierstrass spectrum, as models of FBM (d = 1).
Equivalent synthesis over the Fourier spectrum is discussed in Ref. 62 (pp. 76–77). Kumar and Bodvarsson
[63] later extended these methods to surfaces (d = 2), both for Weierstrass and Fourier spectra. (See also
Ref. 62, pp. 174–187.)

When defined over the Fourier spectrum, the Weierstrass-Mandelbrot function is essentially equivalent
to an inverse Fourier transform of a k-space (spatial-wavenumber domain) description of FBM consisting
of a power-law PSD and a random phase spectrum. Here the Fourier method is chosen for the numerical
generation of surface realizations because discrete Fourier transforms on finite, uniform grids can be efficiently
calculated by the fast Fourier transform (FFT).
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FIG. 6: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 2.8, and kaL = 0.1. (See Table I.)

1. Spatial sampling and surfaces of finite extent

For the numerical generation of surface realizations, z (r) is expressed by a finite two-dimensional array
representing surface heights sampled on a uniform grid. The relation between the spatial-sampling interval
∆x and the maximum resolvable linear spatial wavenumber k̂x = max (|kx|) in each Euclidean dimension
(equivalent to the Nyquist frequency), is given by the Whittaker-Shannon-Kotel’nikov (WSK) sampling
theorem [64]

k̂x = π/∆x . (34)

For isotropic surfaces sampled on a uniform grid (∆x = ∆y), the maximum radial spatial wavenumber is
k̂ =

√
2k̂x.

The relation between the linear extent of the surface (region of support) X and the minimum resolvable
linear spatial wavenumber ǩx = min (|kx|) in each Euclidean dimension (that for which one wavelength
corresponds exactly to the linear extent of the surface) is

ǩx = 2π/X . (35)

Clearly, kx < ǩx can influence the piston (zeroth-order polynomial term), tilt (first-order polynomial term),
and curvature (second- and higher-order polynomial terms) of the surface, though detrending strongly
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FIG. 7: Lowest-order small-slope model predictions of the backscattering strength vs. grazing angle at three values of γ2 for
an incident wave of 3 kHz scattered from a limestone bottom of the Carolina Coast, with a w2 value, density,

shear/compressional speeds, and shear/compressional attenuations inverted from at-sea experimental data [56]. Note the
stratification of scattering levels as a function of γ2 predicted for angles below the shear-speed (s-wave) critical angle.
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FIG. 8: Lowest-order small-slope model predictions of the backscattering strength vs. grazing angle at three values of γ2 for
an incident wave of 300 kHz scattered from the Houston PVC sheet, with a w2 value obtained from profilometry and the

density, shear/compressional speeds, and shear/compressional attenuation measured from a sample of the material. Note the
wide (in comparison with Fig. 7) disparity in the scattering levels for angles below the compressional-speed (p-wave) critical

angle. Verifying this disparity is one goal of the tank experiments currently underway at NRL.
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suppresses kx < ǩx [20]. For surfaces realized on a square surface of support (X = Y ), the minimum radial
spatial wavenumber is ǩ =

√
2ǩx. The observed PSD of a physically realized power-law surface can be

modeled by Eq. (14) where kL = ǩ and kH = k̂.

2. Fractal properties

Discrete, finite-support realizations of FBM are approximately self-affine, band-limited fractals. The
length-scale range x− to x+ over which a such a profile or surface is self-affine is determined by (1) the
spatial sampling interval ∆x, which sets the large-k limit x− and (2) the extent of the region of support X,
which sets the small-k limit x+. Specifically,

x− =
∆x

2
, (36a)

x+ =
X

2
. (36b)

3. Computational procedure

In this work, approximately self-affine, band-limited realizations of FBM are generated by a spectral
method in which a representation of the surface Z(k) is created in k-space (the spatial-wavenumber domain)
and then transformed into a representation z(r) in real space (the spatial domain) using the discrete Fourier
transform (DFT).

In two dimensions the DFT is defined by the pair of equations

Z (kx, ky) =




Nx−1∑
nx=0

Ny−1∑
ny=0

z (nx, ny) e−i(2π/Nx)kxnxe−i(2π/Ny)kyny , 0 � kx � Nx − 1, 0 � ky � Ny − 1

0, otherwise
(37a)

z (nx, ny) =




Nx−1∑
kx=0

Ny−1∑
ky=0

Z (kx, ky) ei(2π/Nx)kxnxei(2π/Ny)kyny , 0 � nx � Nx − 1, 0 � ny � Ny − 1

0, otherwise
(37b)

for a finite-extent first-quadrant support sequence [65].
The surface z (r) must be purely real, which requires that Z (k) be conjugate symmetric [65]

real z (nx, ny) ⇔ Z (kx, ky) = Z̃∗ (−kx,−kx) RNx×Ny
(kx, ky) , (38)

where Z̃ indicates here that the function is periodic with a period of Nx × Ny,

X̃ (kx, ky) = X (kx + Nx, ky) = X (kx, ky + Ny) ∀(Nx, Ny) , (39)

and RNx×Ny
(kx, ky) is defined by

RNx×Ny (kx, ky) =

{
1, 0 � kx � Nx, 0 � ky � Ny

0, otherwise
. (40)

19



In general,
Z(k) = |Z(k)| e2πi arg Z(k) = � [Z(k)] + � [Z(k)] (41)

where P (k) = |Z(k)|2. Here, z(r) is isotropic such that Z(k) is a function of k =
√

k2
x + k2

y only. The
square magnitude of Z(k) is chosen to follow a modified power-law form, as given by Sec. II B. The phase is
chosen to be random, though must be specified such that it meets the symmetry requirements of Eq. (38).
Defining α as an antisymmetric array of random numbers uniformly distributed on (0, 1) (as described in
the Appendix B) yields a simple algorithm for generating a realization of the surface:

z(r) = F
[√

P (k)e2πiα
]

, (42)

where F denotes the Fourier transform operator. While this algorithm ensures, by construction, that the
expected value of the PSD of the generated surface is P (k), it does not explicitly ensure that the resulting
rough surface will be a realization of a Gaussian random process.

A similar approach to generate realizations of band-limited FBM, which was followed by Thorsos [66],
produces realizations for which the expected value of the PSD is P (k), and which also have surface-height
distributions that are guaranteed to be Gaussian. In this method, z(r) is generated by the algorithm

z(r) = F
[√

P (k)
µ + iη√

2

]
, (43)

where µ and η are uncorrelated arrays of random numbers normally distributed with mean of zero and
standard deviation of one.

An equivalent algorithm to that given in Eq. (43), which was used here, can be obtained by modifying
Eq. (42) such that the magnitude is randomly distributed about P (k) according to a Rayleigh distribution

z(r) = F
[√

− ln (β) P (k)e2πiα
]

, (44)

where β is a symmetric array of random numbers uniformly distributed on (0, 1) (as described in the
Appendix B).

The Fourier transform used by these algorithms is a one-to-one linear transformation (though it is
not shift-invariant). It can be shown that a linear transformation of a realization of a Gaussian random
process yields a sequence that is also a realization of a Gaussian random process (Ref. 67, pp. 340-
341). Consequently, a random process that is Gaussian distributed must have a Fourier transform (k-space
representation) that is also Gaussian distributed in both its real and imaginary components [68]. The
algorithm given in Eqs. (43) and (44) therefore yields rough surfaces that, by construction, are realizations
of a Gaussian random process. In contrast, the algorithm given in Eq. (42), yields rough surfaces that
are approximately realizations of a Gaussian random process through the Central Limit Theorem. The
inverse DFT, Eq. (37b), of a random complex-valued random process in k space represents each sample of
the transformed process in real space as a linear combination of random variables, that is, the individual
samples of the k-space representation. Provided that these random variables are mutually independent with
zero means and finite variances (Ref. 67, pp. 225–230), the Central Limit Theorem predicts that each
sample in real space will tend toward a Gaussian distribution as the number of frequency terms in the
inverse DFT becomes large. While the Central Limit Theorem is often approximately valid for surprisingly
small numbers of random variables, the breakdown of the model can be aggravated by the power-law form
of the PSD, which, by decreasing amplitude at large k effectively eliminates the influence of large-k terms.
By using the algorithm given in Eqs. (43) and (44), the realization effectively simulates a larger surface.
However, it can be argued that Eq. (42) is more representative of the central-limit processes through which
physical surfaces arrive at a Gaussian height distribution.
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B. Manufacturing Rough Surfaces

Various approaches have been followed for the manufacture scale-model rough surfaces for use in acousti-
cal experiments. There is likewise a diversity of sources of fabricated topography, some electing to reproduce,
at scale, topography measured from actual surfaces and others choosing to generate arbitrary surfaces sat-
isfying certain statistical conditions.

In the first reported work of this type, Proud et al. [69] built an approximately Gaussian rough surface
from layers of cork strip fixed to plywood substrate. Later Horton et al. [70] manufactured surfaces from
low-density expanded polystyrene based on aeromagnetic contours of the Canadian Shield. Though not
detailed, such a machining process must have been quite difficult given the state of the art at the time
(1967). Much more recently, Gautier and Gibert [36] used resin printing to create a replica of a natural
fracture surface of granite, the topography of which was measured using laser profilometry.

A particularly promising technique, which was adopted for the work described here, is use of computer-
aided manufacturing (CAM) to shape surfaces of near arbitrary topography from blocks of raw material. Use
of this fabrication technique for acoustical scale models was first described by Mellema (Ref. 71, pp. 33–35),
but was used earlier to fabricate rough surfaces for other purposes [72, 73]. Computer-aided manufacturing
uses software to develop fabrication strategies directly from computer representations of a desired finished
object. Such machining strategies take the form of a series of tool paths that describe how a particular
sequence of cutting tools must be moved in order to achieve a prescribed result. Tool paths are expressed in
a scripting language (e.g., G code) and provide the instruction sets used by computer-numerically controlled
(CNC) tools, such as milling machines.

Milling machines are described by the number of independent axes through which they can move a cutting
tool. The number of axes determines the maximum Euclidean dimension (d) of the space embedding an
object that such a mill is able to fabricate. Manufacture of random-rough surface topography (d = 2, d = 3)
as described in Sec. II A requires a 3-axis mill able to independently move along each of the Cartesian
axes. Additional axes, such as employed in 5-axis mills [74], are required only to fabricate objects of higher
topological dimension or surfaces that are not single-valued mappings.

Machining of profiled surfaces is typically performed with a ball-nose end mill, as opposed to the more
common flat end mill. Complete fidelity in milling topography z (r) requires that �, the radius of the
ball-nose end mill, be smaller than ρ̌, the minimum positive radius of curvature of the surface. At any
given point r, the radius of curvature ρ (r) is found by first calculating the mean curvature κH (r) and the
Gaussian curvature κK (r) via

κH(r) =

(
1 + z2

y

)
zxx − 2zxzyzxy +

(
1 + z2

x

)
zyy

2
(
1 + z2

x + z2
y

)3/2 , (45a)

κK(r) =
zxxzyy − z2

xy(
1 + z2

x + z2
y

)2 � κH(r)2 , (45b)

where subscripts in these expressions indicate partial derivatives with respect to the coordinate axes x and
y, evaluated at r. In terms of these, κ+,− (r) = κH (r)±√κ2

H (r) − κK (r) are the two principal curvatures

of z at r. The minimum positive radius of curvature at r is ρ (r) = 1/κ+ (r), such that ρ̌ = 1
/

max
r

[κ+ (r)].
While easily expressed, the above requirements pose the problem of differentiating a fractal surface that,

by definition, is nondifferentiable. This problem is removed in practice because the fractal surface is given
a discrete, finite-support (and therefore band-limited) representation that is only approximately self-affine.
Consequently, derivatives are defined [19, 24].

The requirement of fidelity limits the maximum radius of the tool used to mill the surface, but the nec-
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FIG. 9: Simulation of a ball-nose end mill tracing the evolute tool path.

essarily small cutting-edge length of such a tool may be inconsistent with the relief depth of the topography
to be milled. As a result, milling may require a process of many steps; each step removing a thickness
of material less than the cutting-edge length of the tool. A process based on use of a single tool capable
of resolving all features of the topography would be too inefficient for practical use. Instead, a multistep
process is followed in which the size of the tool is progressively decreased with each cutting pass. Such a
process is typically categorized into two stages of milling operations: roughing and finishing.

In the roughing stages, one or more flat end mills are used to remove excess material from areas where
no detailed profiling of the surface is required. Various strategies may be followed in preparing the surface
for finishing [75]. One class of method removes excess material by machining a series of offset surfaces
of increasing fidelity. Once a sufficient amount of material has been removed, the remaining detailing is
completed during finishing stages. An alternative method, used here, divides the surface into a number of
equal-height contours and removes material sequentially from each layer. The resulting terraced surface is
sculpted into the desired form during the finishing stages.

In the finishing stages, one or more ball-nose end mills are used to cut increasingly detailed surfaces.
During each finishing stage, a surface derived from the desired topography, but having a level of detail
appropriate to the cutter radius used, is milled. In the final finishing stage, the smallest cutter, having
� < ρ̌, is used to mill the desired topography.

In order to machine the surface accurately, without removing excess surface material, the center point
of the spherical tip of the end mill must be offset from the surface by � in the direction of the outward
local normal vector to the surface [74]. Equivalently, this can be expressed as the condition that the center
point of a ball-nose end mill of tip radius � moves in the �-evolute surface associated with the desired
rough surface. This is illustrated in Fig. 9. Note that the evolute surface allows for accurate machining
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only where � < ρ̌. In the case where � ≥ ρ̌ the evolute surface is no longer single valued and gouging
occurs. Typically, the tool path consists of a series of tool passes: closely spaced profiles along the evolute
surface, which the cutter is made to raster across in the process of machining the surface. The final fidelity

FIG. 10: A schematic representation of scalloping caused by by machining a surface with a ball-nose end mill.

of the finishing stage is determined not only by the smallest tip-radius of ball-nose end mill used, but also by
the tool-pass interval, which is the nominal linear spacing between adjacent profiles followed by the cutter.
An ideal ball-nose end mill moving on an ideal evolute surface for which � < ρ̌ contacts z(r) only on the
profiles (tool passes) comprising the tool path. Consequently, for any finite tool pass interval, the finishing
stage leaves excess material on the surface, as shown in Fig. 10. The height of these so-called scallops is
determined by the tool-pass interval, the tip radius of the ball-nose end mill, and the local topography of

z(r) [73, 74]. For a flat surface, the scallops are of uniform height ξ = � −
√

� − (∆/2)2, where ∆ is the
tool-pass interval. The primary requirement, after fidelity, is scallops of a sufficiently small size that neither
the collective effect of isolated scattering from single scallops nor the effect of the grating scattering resulting
from their aggregate are significant in the frequency range of interest.

An example of a rough surface physically realized using the techniques described here is shown in Figs.
11–12. In Fig. 11, the desired topography is shown and compared with the topography of the realized
sample as measured by a touch-trigger probe, shown in Fig. 12. The maximum difference between these
two measured topographies is ≤ 1 mm.
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FIG. 11: Topography of a computer-generated realization of band-limited FBM.

C. Verifying Properties of Rough-Surface Realizations

Measurement and characterization of physical realizations of band-limited FBM and other random rough
surfaces are needed both to confirm that manufactured physical realizations have achieved the desired form
and to characterize existing rough surfaces.

1. Measurement

Reviews of techniques for measurement of rough-surface topography can be found in Refs. 76 and
7. Many sophisticated techniques exist, but simple contact methods are sufficient to characterize surface
topography over length scales relevant for acoustical scattering. Such methods include traditional stylus
methods (profilometry) as described in Ref. [76] and the modern and conceptually simple kinematic-resistive
touch-trigger probe used in coordinate measurement machines (CMMs) [77, 78, 79].

For the work described here, a touch-trigger probe was used. Unlike profilometric methods that provide
a continuous reporting of surface height, touch-trigger probes specify surface coordinates at discrete points.
For rough surfaces this translates to specification of the surface height at discrete points on a uniform two-
dimensional grid, a representation termed a digital elevation model (DEM). This representation is analogous
to that used for the numerical generation of rough surface topography described in Sec. III A, and therefore
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FIG. 12: Topography of a physical realization manufactured from the numerical realization shown in Fig. 11 as measured by
a touch-trigger probe.

has the same large-k cutoff described in Sec. III A 1.
Similarly, the tip radius of the touch-trigger probe must meet the criteria given in Sec. III B in order to

accurately represent the surface topography. If the tip radius � does not satisfy � < ρ̌, the touch-trigger
probe will report truncated depths for those valleys where � > ρ. This effect of the spherical radius of the
probe is similar to that of a low-pass wavenumber filter applied to the topography [80, 81].

Data obtained by physical measurement commonly contain errors in the form of piston or tilt (equivalent
to biases of d = 1 profiles described by zeroth- or first-order polynomials, respectively) due to misalignment
between the surface and the measuring machine. This can be removed by fitting a plane to the surface and
then subtracting this plane from the measured DEM. The resulting detrended data have a modified PSD, as
described in Sec. (II B). Additionally, detrending is appropriate only if the sample is large enough relative
to the small-k cutoff of the PSD that there is no underlying bias in the topography of the sample itself.

2. Analysis

Analysis of DEMs, either numerically generated or measured from real surfaces, can serve a number of
purposes. For numerically derived DEMs, analysis can determine whether a realization is representative of
the ensemble from which it was drawn. For physically derived DEMs, analysis can characterize and unknown
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physical surface or validate that a manufactured surface has the desired properties.
Rough-surface topography is primarily characterized by its PSD. Consequently, analysis of DEMs typ-

ically comprises spectral estimation followed by parametric descriptions of the spectral estimate, such as
wd and γd. While many methods of spectral estimation exist (see, e.g., Ref. 82), PSDs of power-law form
present certain complications [83]. Spectral estimates based on the Fourier transform of a finite-length pro-
file suffer from spectral leakage due to convolution in k-space of the Fourier transform of the topography
with the Fourier transform of the windowing function. As noted by Austin et al. [83], spectral leakage is a
particular problem for PSDs of power-law form because leakage of high-power components at small k raises
the estimated power of components at large k resulting in an overall bias of the spectral estimate toward
PSD of shallower slope. This results in underestimation of γd and overestimation of wd.

Use of spatial windows having rapidly decaying Fourier transforms can partially address this, but only
at the expense of decreased spectral resolution. Alternatively, DEMs can be prewhitened before spectral
estimation in order to reduce spectral leakage and the estimated PSD corrected by a multiplicative factor
to account for prewhitening [8, 13, 26, 83]. Prewhitening is easily achieved by taking the first differences of
the data [8, 26].

An alternative to spectral characterization of DEMs is characterization in terms of fractal parameters H

and τ . While fractal parameters are typically estimated from PSD, they can also be estimated by nonspectral
methods. This is necessary in the case of DEM because their inherent band limiting causes the relationship
between H and γd to break down [49, 50, 53].

IV. SUMMARY

The rough topography of an ocean bottom can be modeled as an isotropic two-dimensional random field
having a power spectral density of power-law form. While idealized random fields having power spectral
density of this form are self-affine stochastic fractals (realizations of FBM), manufacturing constraints impose
high- and low-k cutoffs on the power-law form of the PSD. As a result, physically realized scale models of
ocean bottoms are approximately self-affine surfaces (realizations of band-limited FBM) for which scaling
properties exist only over a finite hierarchy of scales and conventional relations between PSD and fractal
geometry break down. Rather than serve as a complication, the breakdown of the idealized fractal model
produces meaningful relations between concepts from fractal geometry and conventional statistical metrics.
These new relations explicitly involve wavenumber cutoffs, which, as shown in Sec. II D, are as influential
on the appearance of fractal surfaces as the parameters describing the PSD.

Discretely sampled realizations of band-limited FBM can be numerically generated by Fourier-transform
methods, with high- and low-k cutoff corresponding to sampling interval and array size, respectively. Physical
realizations of these numerical representations can be accurately manufactured by CAM techniques using
a CNC milling machine under the condition that the tip radius of the ball-nose end mill used for the final
finishing is smaller than the minimum positive radius of curvature of the surface.

In this report the recent concept of approximately self-affine profiles and surfaces has been newly intro-
duced into the context of modeling the rough topography of the ocean bottom and the fabrication of physical
models. Although physical realizations of FBM have been previously fabricated [71, 72], prior work has not
considered the effects of the band-limiting imposed by the fabrication process on the fractal properties of
the resulting physical realization. It has been shown that, given restrictions in bandwidth, the parameters
of the power-law spectrum typically used in the field of underwater acoustics to characterize the surface, are
no longer simply related to the more fundamental description of the surface in terms of fractal geometry.
Moreover, as Sec. II D illustrates, the location of the low-k cutoff can markedly affect even the appearance
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of approximately self-affine band-limited FBM. Additionally, this report has given algorithms for numerical
generation of surface topography of this type and guidelines for CAM that are specific to this topography.
The discussion concerning numerical generation contributes a more explicit clarification of the differences
between previously published spectral methods.
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APPENDIX A: REALIZATIONS OF BAND-LIMITED FRACTAL SURFACES

This appendix contains the still frames of the embedded movie in Fig. 3, as described in Table I.
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FIG. 13: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 2.0, and kaL = 0.05. (See Table I.)
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FIG. 14: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 2.4, and kaL = 0.05. (See Table I.)
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FIG. 15: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 2.8, and kaL = 0.05. (See Table I.)
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FIG. 16: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 3.2, and kaL = 0.05. (See Table I.)
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FIG. 17: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 3.6, and kaL = 0.05. (See Table I.)
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FIG. 18: Realization of a band-limited fractal surface with w2 = 1 · 10−5 m4, γ2 = 4.0, and kaL = 0.05. (See Table I.)
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APPENDIX B: DETAILS OF ALGORITHM FOR GENERATION OF SURFACE
REALIZATIONS

Because z(r) is real, Z(k) must be conjugate symmetric. Efficient computation of z(r) from Z(k) by the
DFT using the FFT algorithm requires that the matrices have dimensions that are integer powers of two.
A conjugate symmetric M by N matrix where both M and N are even is of the form

a1,1 a∗
1,N a∗

1,N−1 · · · a∗
1, N

2 +2
a
1, N

2 +1
· · · · · · a1,N

a1,2 a∗
M,N a∗

M,N−1 · · · a∗
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...
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...

...
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, (B1)

where the subscripts indicate the row and column, respectively. In those cases where the indices appear to be
incorrect, it simply represents the conjugate symmetry of the matrix. The matrix of uniformly distributed
random numbers α used in Eqs. (42 and 44) must have odd symmetry, as illustrated by the antisymmetric
matrix below
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In contrast, the matrix of uniformly distributed random numbers β used in Eq. (44) must have even
symmetry, as illustrated by the symmetric matrix below
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APPENDIX C: MATLAB FUNCTIONS

This appendix contains the header portions of matlab functions used to numerically generate and
characterize band-limited FBM. The full functions along with required support functions are included on
this CD-ROM. The matlab functions were developed under matlab 6.1 R12 and, in some cases, require
the Signal Processing Toolbox (or equivalent functions written by the user) for operation. All software on
this CD-ROM is distributed freely, but is subject to the copyrights and terms of use specified in the headers
of the individual files.

1. Numerical generation of band-limited FBM surfaces

function surf_z=generate_surface(varargin)

% []=generate_surface(frq,c,Lx,Ly,dx,dy,spectratype,w_2_gamma_2,

% LF_param,pname,randstate)

%

% Generates a 2-D random rough surface with a power-law spectrum

% and low-frequency roll-off. The surface and parameters are saved

% to a file. Plots of the surface can be displayed.

%

% If called as a function with input parameters, the parameters

% specified in the function call are used instead of the

% parameters specified in the file and plotting is disabled.

%

% J.E. Summers, 2005

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reference

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% J. E. Summers, R. J. Soukup, and R. F. Gragg, "Characterization

% and fabrication of synthetic rough surfaces for acoustical scale

% -model experiments," NRL/MR-MM/7140--05-8871, U. S. Naval Research

% Laboratory, Washington, D.C., 2005

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Conditions and terms for the use of this software

%

% This software may be used, reproduced, modified, and distributed

% by the user for noncommercial purposes but is Copyright (C)

% Jason E. Summers (summers@abyss.nrl.navy.mil).

%

% Users have the right to use the software with the following terms

% and conditions:

%

% Users agree that any copies of the software will contain the same

% proprietary notices and warranty disclaimers which appear in this

% software.

%

% Users can make modifications to this software but must

% include references to the original software and author.

%

% If a user makes any modifications to this software and the

% modified software is redistributed, then the user must notify the

% author of the original software by an e-mail sent to

% summers@abyss.nrl.navy.mil.

%

% The original author shall be credited should this software be used

% in any form or written about in any publication.

%

% This software is provided "as is", without warranty by the author

% or by the United States Naval Research Laboratory (NRL). Although

% the software has been tested on Windows machines under

% MATLAB 6.1 R12, neither the author nor NRL make any warranties

% relating to the software’s performance on this or any other

% platforms. The author and NRL make no express, implied, or

% statuatory warranty of any kind for this software including, but

% not limited to, any warranty of performance, merchantability, or

% fitness for a particular purpose. In no event shall the author or

% NRL be liable to the user or any thrid party for any loss or for

% any indirect, special, punitive, examplary, incidental, or

% consequential damages arising from the use, possession or

% performance of this software, even if the author or NRL have

% been advised of the possibility thereof.

%

% Any comments on errors, or hints about possible improvements or

% extensions are appreciated.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dependencies

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% requires:

% Signal Processing Toolbox: fftshift.m

% calcspectra.m : computes the 2-D roughness spectrum

% rand2.m : computes the 2-D realization

% odd.m : rounds to the nearest odd number (time-frequency toolbox)

%

% can be used with:

% characterize_surface.m : characterizes the surface and generates

% a text file of descriptors

% export_surface.m : exports the surface geometry into common

% CAD/CAM formats (*.asc, *.stl)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<1

% target measurement frequency (Hz)

frq = 300000;

% speed of sound (meters/sec)

% GPM RSS2: 1482 m/s

c = 1482;

% desired surface dimensions (meters)

Lx = 1;

Ly = 1;

% desired spacing between sample points (meters)

dx = 1e-3;

dy = 1e-3;

% form of the spectrum

spectratype=’alg’;

% * ’moe’: Moe’s spectrum (Gaussian LF cutoff) [Eq. (15)]

% * ’pwr’: power law [Eq. (10)]

% * ’alg’: power law with algebraic LF cutoff [Eq. (13)]

% * ’box’: power law with box-car HF and LF cutoff [Eq. (12)]

% * ’dif’: power law with LF cutoff expressed as the

% difference of two pure power laws [Eqs. (16)]

% for the realization either the inverse transform of the roughness

% spectrum can be done by assuming random phases with a Gaussian

% distribution only (amprand=0) or by adding a random amplitude

% factor given by a Rayleigh distribution (amprand=1)

amprand=1;

% spectral strength (meters^4)

w_2 = 2.0e-5;

% two-dimensional spectral exponent

% (dimensionless number between 2 and 4)

gamma_2 = 3.5;

% low-frequency cutoff parameter

LF_param = 20;

% try 0.05 for a in moe (knee at K~30; scales in K linearly with

% 1/LF_param)

% try 20 for mod

%path name in which to save created surface

pname=’D:\NRL\’;

% number of the random iteration to create

35



% (0 to 2^1492, which is the period of Matlab’s internal

% random number generator)

randstate=333;

% turn on and off plotting

plotsurf=0; % 1 to show plots, 0 to not

plotspec=0; % 1 to show plots of spectrum, 0 to not

elseif nargin==12

frq=varargin{1};

c=varargin{2};

Lx=varargin{3};

Ly=varargin{4};

dx=varargin{5};

dy=varargin{6};

spectrtype=varargin{7};

w_2=varargin{8};

gamma_2=varargin{9};

LF_param=varargin{10};

pname=varargin{11};

randstate=varargin{12};

else

error(’generate_surface: wrong number of input arguments’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2. Characterization of discrete-sampled rough surfaces

function varargout=characterize_surface(varargin)

% [w_2,gamma_2]=characterize_surface(Spname,Sfname)

%

% Where Spname and Sfname are the path name and file name of a file

% created by generate_surface.m.

%

% or

%

% [w_2,gamma_2]=characterize_surface(c,dx,dy,surf_z,frq)

%

% Where c is the sound speed, dx is sample spacing in x, dy is the

% sample spacing in y, and surf_z is a matrix of surface heights.

%

% or

%

% [w_2,gamma_2]=characterize_surface(c,surf_x,surf_y,surf_z,frq)

%

% Where c is the sound speed, surf_x is a matrix of x coordinates,

% surf_y is a matrix of y coordinates, and surf_z is a matrix of

% surface heights.

%

% Calculates parameters of a 2D random rough surface with a power-law

% spectrum, which are then displayed on the screen and output to a

% text file. The following parameters are calculated:

%

% max and min surface height

% rms surface height

% minimum curvature

% smallest ball-nose end mill required to mill surface accurately

% correlation length

% w_2

% gamma_2

% fractal dimension

% Hurst exponent

% topothesy

%

% If called as a function, plotting and screen displays are disabled.

%

% If called with no outputs, results are displayed on screen and

% plotted.

%

% If called with no inputs, a default file is opended and analyzed.

%

% J.E. Summers, 2005

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reference

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% J. E. Summers, R. J. Soukup, and R. F. Gragg, "Characterization

% and fabrication of synthetic rough surfaces for acoustical scale

% -model experiments," NRL/MR-MM/7140--05-8871, U. S. Naval Research

% Laboratory, Washington, D.C., 2005

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Conditions and terms for the use of this software

%

% This software may be used, reproduced, modified, and distributed

% by the user for noncommercial purposes but is Copyright (C)

% Jason E. Summers (summers@abyss.nrl.navy.mil).

%

% Users have the right to use the software with the following terms

% and conditions:

%

% Users agree that any copies of the software will contain the same

% proprietary notices and warranty disclaimers which appear in this

% software.

%

% Users can make modifications to this software but must

% include references to the original software and author.

%

% If a user makes any modifications to this software and the

% modified software is redistributed, then the user must notify the

% author of the original software by an e-mail sent to

% summers@abyss.nrl.navy.mil.

%

% The original author shall be credited should this software be used

% in any form or written about in any publication.

%

% This software is provided "as is", without warranty by the author

% or by the United States Naval Research Laboratory (NRL). Although

% the software has been tested on Windows machines under

% MATLAB 6.1 R12, neither the author nor NRL make any warranties

% relating to the software’s performance on this or any other

% platforms. The author and NRL make no express, implied, or

% statuatory warranty of any kind for this software including, but

% not limited to, any warranty of performance, merchantability, or

% fitness for a particular purpose. In no event shall the author or

% NRL be liable to the user or any thrid party for any loss or for

% any indirect, special, punitive, examplary, incidental, or

% consequential damages arising from the use, possession or

% performance of this software, even if the author or NRL have

% been advised of the possibility thereof.

%

% Any comments on errors, or hints about possible improvements or

% extensions are appreciated.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dependencies

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% requires:

% Signal Processing Toolbox: xcorr.m

% linfit.m : a least-squares linear-fitting routine

% calc_curve.m : calculates curvature of a surface

%

% can be used with:

% generate_surface.m : generates a 2D random rough surface

% with a specified power-law spectrum

% export_surface.m : exports the surface geometry into common

% CAD/CAM formats (*.asc, *.stl)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargout==1 | nargout>2

error(’characterize_surface: wrong numer of output arguments’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin==0

% file name containing the surface realization to be characterized

Spname=’D:\NRL\GeoacousticPhysicalModeling\2004\’;

Sfname=’W2_1e-005_G2_3_rP_333’;

% load the surface realization data

load([Spname Sfname ’.mat’],’-mat’)

% control plotting

plotstats=1; % 1 to show plots of statistics, 0 to not

plotfits=0;
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normalize_plot=0; % 1 to normalize the S vs. k plots, 0 to not

elseif nargin==2

if ischar(varargin{1})

Spname=varargin{1};

Sfname=varargin{2};

% load the surface realization data

load([Spname Sfname ’.mat’],’-mat’)

end

elseif nargin==4

if isnumeric(varargin{1})

c=varargin{1};

surf_z=varargin{4};

if size(varargin{2})==[1 1]

dx=varargin{2};

dy=varargin{3};

else

surf_x=varargin{2};

surf_y=varargin{3};

end

end

else

error(’characterize_surface: wrong number of input arguments’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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GLOSSARY OF SYMBOLS

CAM Computer-aided machining.

CMM Coordinate measurement machine.

DEM Digital elevation model.

PDF Power density function.

PSD Power spectral density.

<>e Ensemble average.

<>s Spatial average.

γ1 One-dimensional roughness exponent.

γ2 Radial roughness exponent.

∆ Tool-pass interval.

κH Mean curvature.

κK Gaussian curvature.

κ+ Maximum principal curvature.

κ− Minimum principal curvature.

ξ Scallop height.

� Radius of ball-nose end mill.

ρ̌ Minimum positive radius of curvature of z(r).

ρ(r) Radius of curvature of z(r) at r.

σ Root-mean-square roughness.

τ Topothesy.

B Box dimension.

C Autocorrelation.

C0 Autocovariance.

d Euclidean dimension.

d Topological dimension.

fz(ζ) Probability density function of z.
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h0 Reference length.

H Hausdorff-Besicovitch dimension.

J0 Zeroth-order Bessel function.

k Radial spatial wave number.

k+ Upper cutoff of k.

k− Lower cutoff of k.

kH Upper cutoff of k.

kL Lower cutoff of k.

kp Location of spectral peak.

kx One-dimensional spatial wave number.

ǩx Minimum resolvable kx.

k̂x Maximum resolvable kx.

kaL Lower cutoff of k.

� Correlation length.

P (k) Radial power spectral density.

p(kx) Linear power spectral density.

r Two-dimensional vector of position with coordinates (x, y).

R Translation |r1 − r2|.
R

n Set of real number in n dimensions.

S(R) Structure function.

w1 One-dimensional spectral strength.

w2 Radial spectral strength.

z(r) Surface topography (height) as a function of position.

z0(r) Deterministic large-scale roughness.

Z(k) Wavenumber (k-space) representation of the surface.

< z > Mean surface height.
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